skip to main content


Search for: All records

Creators/Authors contains: "Zeng, Zhichao Carton"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We combine the isothermal Jeans model and the model of adiabatic halo contraction into a semi-analytic procedure for computing the density profile of self-interacting dark-matter (SIDM) haloes with the gravitational influence from the inhabitant galaxies. The model agrees well with cosmological SIDM simulations over the entire core-forming stage up to the onset of gravothermal core-collapse. Using this model, we show that the halo response to baryons is more diverse in SIDM than in CDM and depends sensitively on galaxy size, a desirable feature in the context of the structural diversity of bright dwarfs. The fast speed of the method facilitates analyses that would be challenging for numerical simulations – notably, we quantify the SIDM halo response as functions of the baryonic properties, on a fine mesh grid spanned by the baryon-to-total-mass ratio, Mb/Mvir, and galaxy compactness, r1/2/Rvir; we show with high statistical precision that for typical Milky-Way-like systems, the SIDM profiles are similar to their CDM counterparts; and we delineate the regime of core-collapse in the Mb/Mvir − r1/2/Rvir space, for a given cross section and concentration. Finally, we compare the isothermal Jeans model with the more sophisticated gravothermal fluid model, and show that the former yields faster core formation and agrees better with cosmological simulations. We attribute the difference to whether the target CDM halo is used as a boundary condition or as the initial condition for the gravothermal evolution, and thus comment on possible improvements of the fluid model. We have made our model publicly available at https://github.com/JiangFangzhou/SIDM. 
    more » « less
  2. ABSTRACT Self-interacting dark matter (SIDM) cosmologies admit an enormous diversity of dark matter (DM) halo density profiles, from low-density cores to high-density core-collapsed cusps. The possibility of the growth of high central density in low-mass haloes, accelerated if haloes are subhaloes of larger systems, has intriguing consequences for small-halo searches with substructure lensing. However, following the evolution of ${\lesssim}10^8 \, \mathrm{M}_\odot$ subhaloes in lens-mass systems (${\sim}10^{13}\, \mathrm{M}_\odot$) is computationally expensive with traditional N-body simulations. In this work, we develop a new hybrid semi-analytical + N-body method to study the evolution of SIDM subhaloes with high fidelity, from core formation to core-collapse, in staged simulations. Our method works best for small subhaloes (≲1/1000 host mass), for which the error caused by dynamical friction is minimal. We are able to capture the evaporation of subhalo particles by interactions with host halo particles, an effect that has not yet been fully explored in the context of subhalo core-collapse. We find three main processes drive subhalo evolution: subhalo internal heat outflow, host-subhalo evaporation, and tidal effects. The subhalo central density grows only when the heat outflow outweighs the energy gain from evaporation and tidal heating. Thus, evaporation delays or even disrupts subhalo core-collapse. We map out the parameter space for subhaloes to core-collapse, finding that it is nearly impossible to drive core-collapse in subhaloes in SIDM models with constant cross-sections. Any discovery of ultracompact dark substructures with future substructure lensing observations favours additional degrees of freedom, such as velocity-dependence, in the cross-section. 
    more » « less